Health Research

Health Research Library

Search

Characterization of PACs profile and bioactivity of a novel nutraceutical combining cranberry extracts with different PAC-A oligomers, D-mannose and ascorbic acid: an in vivo/ex vivo evaluation of dual mechanism of action on intestinal barrier and urinary

Posted
Authors
Faggian, M., Bernabe, G., Valente, M., Francescato, S., Baratto, G., Brun, P., Castagliuolo, I., Dall'Acqua, S., Peron, G
Journal
Food Research International 2021. 149.
Abstract

In this paper, an A-type procyanidin (PAC)-rich cranberry extract (CB-B) was obtained mixing different extracts and was formulated with D-mannose and ascorbic acid to obtain a novel nutraceutical (URO-F) aimed at preventing non-complicated bacterial urinary tract infections (UTIs). To assess the bioactivity of CB-B and URO-F, urine samples collected from six healthy volunteers undergoing a 2-days oral consumption of 0.41 g/day of CB-B or 10 g/day of URO-F (corresponding to 72 mg/day of PACs) were tested against uropathogenic E. coli (UPEC) incubated on urinary bladder epithelial cells (T24). Urinary markers of CB-B and URO-F consumption were assessed in the same urine output by UPLC-QTOF-based untargeted metabolomics approach. CB-B and URO-F were evaluated for their ability to promote the intestinal barrier function by restoring the trans-epithelial electrical resistance (TEER) and to inhibit the production of inflammatory cytokines in intestinal epithelial Caco2 cells. CB-B was characterized by a high PAC-A content (70% of total PACs) and a broad distribution of different PACs polymers (dimers-hexamers). Urine from subjects consuming CB-B and URO-F showed a significant effect in reducing the adhesion of UPEC to urothelium in vitro, supporting their efficacy as anti-adhesive agents after oral intake. CB-B inhibited the release of cytokine IL-8, and both products were effective in restoring the TEER. Overall, our results show that the beneficial effects of CB-B and URO-F on UTIs are not only due to the antiadhesive activity of cranberry on UPEC in the urothelium, but also to a multi-target activity involving anti-inflammatory and permeability-enhancing effects on intestinal epithelium.