Health Research

Health Research Library

Search

2010

Displaying 211 - 217 of 217

The absence of an interaction between warfarin and cranberry juice: a randomized, double-blind trial.

Posted
Authors
Ansell J, McDonough M, Zhao Y, Harmatz JS, Greenblatt DJ.
Journal
J Clin Pharmacol 49(7):824-30
Abstract

The question of potentiation of warfarin anticoagulation by cranberry juice (CJ) is a topic of biomedical importance. Anecdotal reports of CJ-warfarin interaction are largely unconfirmed in controlled studies. Thirty patients on stable warfarin anticoagulation (international normalized ratio [INR], 1.7-3.3) were randomized to receive 240 mL of CJ or 240 mL of placebo beverage, matched for color and taste, once daily for 2 weeks. The INR values and plasma levels of R- and S-warfarin were measured during the 2-week period and a 1-week follow-up period. The CJ and placebo groups (n=14 and 16, respectively) did not differ significantly in mean plasma R- and S-warfarin concentrations. Eight patients (4 on CJ, 4 on placebo) developed minimally elevated INR (range, 3.38-4.52) during the treatment period. Mean INR differed significantly (P.02) only on treatment day 12; at all other time points, the groups did not differ. Cranberry juice has no effect on plasma S- or R-warfarin plasma levels, excluding a pharmacokinetic interaction. A small though statistically significant pharmacodynamic enhancement of INR by CJ at a single time point is unlikely to be clinically important and may be a random change. Enhanced warfarin anticoagulation attributed to CJ in anecdotal reports may represent a chance temporal association.

A Flavonoid Fraction from Cranberry Extract Inhibits Proliferation of Human Tumor Cell Lines

Posted
Authors
Ferguson PJ,Kurowska E, Freeman DJ, Chambers AF,
Journal
J Nutr 134:1529-1535
Abstract

In light of the continuing need for effective anticancer agents, and the association of fruit and vegetable consumption with reduced cancer risk, edible plants are increasingly being considered as sources of
anticancer drugs. Cranberry presscake (the material remaining after squeezing juice from the berries), when fed to mice bearing human breast tumor MDA-MB-435 cells, was shown previously to decrease the growth and
metastasis of tumors. Therefore, further studies were undertaken to isolate the components of cranberry that
contributed to this anticancer activity, and determine the mechanisms by which they inhibited proliferation. Using
standard chromatographic techniques, a warm-water extract of cranberry presscake was fractionated, and an
acidified methanol eluate (Fraction 6, or Fr6) containing flavonoids demonstrated antiproliferative activity. The
extract inhibited proliferation of 8 human tumor cell lines of multiple origins. The androgen-dependent prostate cell
line LNCaP was the most sensitive of those tested (10 mg/L Fr6 inhibited its growth by 50%), and the estrogen independent breast line MDA-MB-435 and the androgen-independent prostate line DU145 were the least sensitive
(250 mg/L Fr6 inhibited their growth by 50%). Other human tumor lines originating from breast (MCF-7), skin
(SK-MEL-5), colon (HT-29), lung (DMS114), and brain (U87) had intermediate sensitivity to Fr6. Using flow
cytometric analyses of DNA distribution (cell cycle) and annexin V-positivity (apoptosis), Fr6 was shown in
MDA-MB-435 cells to block cell cycle progression (P 0.05) and induce cells to undergo apoptosis (P 0.05) in
a dose-dependent manner. Fr6 is potentially a source of a novel anticancer agent.

Anti-microbial activity of urine after ingestion of cranberry: a pilot study

Posted
Authors
Lee YL,Najm WI, Owens J, Thrupp L, Baron S, Shanbrom E, Cesario T
Journal
eCAM 7(2):227–232
Abstract

We explore the anti-microbial activity of urine specimens after the ingestion of a commercial cranberry preparation. Twenty subjects without urinary infection, off antibiotics and all supplements or vitamins were recruited. The study was conducted in two phases: in phase 1, subjects collected the first morning urine prior to ingesting 900mg of cranberry and then at 2, 4 and 6 h. In phase 2, subjects collected urine on 2 consecutive days: on Day 1 no cranberry was ingested (control specimens), on Day 2, cranberry was ingested. The pH of all urine specimens
were adjusted to the same pH as that of the first morning urine specimen. Aliquots of each specimen were independently inoculated with Escherichia coli, Klebsiella pneumoniae or Candida albicans. After incubation, colony forming units/ml (CFU ml 1) in the control specimen
was compared with CFU ml 1 in specimens collected 2, 4 and 6 h later. Specimens showing 50% reduction in CFU ml 1 were considered as having ‘activity’ against the strains tested. In phase 1, 7/20 (35%) subjects had anti-microbial activity against E. coli, 13/20 (65%) against K. pneumoniae and 9/20 (45%) against C. albicans in specimens collected 2–6 h after ingestion of cranberry. In phase 2, 6/9 (67%) of the subjects had activity against K. pneumoniae. This pilot
study demonstrates weak anti-microbial activity in urine specimens after ingestion of a single dose of commercial cranberry. Anti-microbial activity was noted only against K. pneumoniae 2–6 h after ingestion of the cranberry preparation.

Cranberry cocktail juice, cranberry concentrates,

Posted
Authors
Lipson SM, Cohen P, Zhou J,Burdowski A
Journal
Mol Nutr Food Res 51:752-758
Abstract

Studies were performed to investigate the effect of several cranberry and grape juice extracts on the inhibition of reovirus infectivity following cell culture inoculation. Infectivity testing was performed utilizing cranberry juice extracts NutriCran-100TM and NutriCran-90TM. At 5% extract concentrations, titers were reduced by ca. 50%. Cranberry cocktail juice caused an infectivity loss of ca. 10%. We ascribe these data to higher concentrations of proanthocyanidins (PACs) in the cranberry extracts.
Further testing was performed utilizing purified high and low molecular weight cranberry PAC fractions (CB HMW and CB LMW, respectively), a cranberry flavonol glycoside (CB EToAc), cranberry anthocyanins (CB CA), and a grape PAC extract. Reovirus titers were reduced to undetectable levels at PAC concentrations f0.2%. CB CA had no effect on the inhibition of infectivity titers. Loss of infectivity titers was in the order: GP PACACB HMWACB LMWACB EToAc. Probe homogenization of CB HMWenhanced the extract to efficacy levels equal to that of grape PAC. Reovirus dsRNA segments were undetectable 96-h postcranberry cocktail juice pretreatment of MA-104 cell cultures. This study indicates an inhibition of reovirus infectivity titers by cranberry or grape juices or their purified PAC extracts. Viral inhibition probably occurs at the host cell surface.

Effects of Cranberry Juice on Pharmacokinetics of -Lactam

Posted
Authors
Li M, Andrew MA, Wang J, Salinger DH, Vicini P,
Journal
Antimicrob Agents Chemother 53(7):2725-32
Abstract

Cranberry juice consumption is often recommended along with low-dose oral antibiotics for prophylaxis for
recurrent urinary tract infection (UTI). Because multiple membrane transporters are involved in the intestinal
absorption and renal excretion of -lactam antibiotics, we evaluated the potential risk of pharmacokinetic
interactions between cranberry juice and the -lactams amoxicillin (amoxicilline) and cefaclor. The amoxicillin-
cranberry juice interaction was investigated in 18 healthy women who received on four separate occasions
a single oral test dose of amoxicillin at 500 mg and 2 g with or without cranberry juice cocktail (8 oz) according
to a crossover design. A parallel cefaclor-cranberry juice interaction study was also conducted in which 500 mg
cefaclor was administered with or without cranberry juice cocktail (12 oz). Data were analyzed by noncompartmental
methods and nonlinear mixed-effects compartmental modeling. We conclude that the concurrent
use of cranberry juice has no significant effect on the extent of oral absorption or the renal clearance of
amoxicillin and cefaclor. However, delays in the absorption of amoxicillin and cefaclor were observed. These
results suggest that the use of cranberry juice at usual quantities as prophylaxis for UTI is not likely to alter
the pharmacokinetics of these two oral antibiotics.

Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E production by lipopolysaccharide-activated gingival fibroblasts

Posted
Authors
Bodet C, Chandad F, Grenier D
Journal
Eur J Oral Sci 115(1):64-70
Abstract

Periodontitis is a chronic inflammatory disease that affects the tooth supporting tissues. Gingival fibroblasts are the most abundant cells in periodontal tissues and participate actively in the host inflammatory response to periodontopathogens, which is known to mediate local tissue destruction in periodontitis. The aim of this study was to investigate the effect of a proanthocyanidin-enriched cranberry fraction, prepared from cranberry juice concentrate, on inflammatory mediator production by gingival fibroblasts stimulated by the lipopolysaccharide (LPS) of Aggregatibacter actinomycetemcomitans. Interleukin (IL)-6, IL-8, and prostaglandin E(2) (PGE(2)) production by fibroblasts treated with the cranberry fraction and stimulated by A. actinomycetemcomitans LPS was evaluated by enzyme-linked immunosorbent assay. Changes induced by A. actinomycetemcomitans LPS and the cranberry fraction in the expression and phosphorylation state of fibroblast intracellular signaling proteins were characterized by antibody microarrays. The LPS-induced IL-6, IL-8, and PGE(2) responses of gingival fibroblasts were inhibited by treatment with the cranberry fraction. This fraction was found to inhibit fibroblast intracellular signaling proteins, a phenomenon that may lead to a down-regulation of activating protein-1 activity. Cranberry components also reduced cyclooxygenase 2 expression. This study suggests that cranberry juice contains molecules with interesting properties for the development of new host-modulating therapeutic strategies in the adjunctive treatment of periodontitis.

Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7.

Posted
Authors
Lacombe A, Wu VC, Tyler S, Edwards K
Journal
Int J Food Microbiol 139(2010):102-7
Abstract

We investigated the antimicrobial effect of constituents of the American cranberry (Vaccinium macrocarpon); sugar plus organic acids, phenolics, and anthocyanins, against Escherichia coli O157:H7. Each fractional component was assayed over a 24-h period with 5-log initial inocula to determine the minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and log CFU/ml reductions, at their native pH and neutral pH. Each fraction produced significant reductions (P0.05) at the native pH: MICs for sugars plus organic, phenolics, and anthocyanins were 5.6/2.6 Brix/acid (citric acid equivalents) 2.70g/L (gallic acid equivalent), and 14.80mg/L (cyanidin-3-glucoside equivalent), respectively. Sugars plus organic acids at native pH (3) produced a reduction below detectable limits (1 log CFU/ml) compared to the control at 24h for 11.3/5.2 and 5.6/2.6 Brix/acid. Phenolics at native pH (4) produced reductions below detectable limits compared to the control at 24h and initial inocula for treatments of 5.40 and 2.70g/L. Anthocyanins at native pH (2) produced reductions below detectable limits for treatments of 29.15 and 14.80mg/L cyanidin-3-glucoside equivalents. Neutralized phenolics and anthocyanins had the same MIC and MBC as those at their native pH. Neutralized sugars plus organic acids did not inhibit bacterial growth compared to the control. Neutralized phenolics reduced bacteria below detectable limits in treatments of 5.40g/L and 2.70g/L compared to the control. Neutralized anthocyanins reduced bacterial growth below detectable limits at the concentration of 29.15mg/L, but at 14.80mg/L there was no significant reduction. Stationary-phase cells of E. coli O157:H7 were treated with 5% of each fraction in 0.8% NaCl for 20min and viewed under transmission electron microscopy. All fractions caused significant damage compared the control. Sugars plus organic acids caused visible osmotic stress, while phenolics and anthocyanins caused disintegration of the outer membrane.